Технология и практика обучения

Галина Ивановна Попова, доцент кафедры информационных образовательных технологий факультета математики и компьютерных наук Кубанского государственного университета, gi-popo@mail.ru

СИСТЕМЫ ГЕНЕРАЦИИ ИНДИВИДУАЛЬНЫХ ЗАДАНИЙ В СРЕДЕ MathCAD

В статье представлен алгоритм конструирования систем генерации индивидуальных заданий на установление соответствия в среде математического пакета MathCAD.

Возможные подходы к использованию математического пакета MathCAD для разработки электронных образовательных ресурсов были представлены в работах С.П. Грушевского, Г.И. Поповой¹. Рассмотрим создание в среде математического пакета MathCAD системы документов для генерации, сохранения и проверки заданий одного из распространенных типов — на установление соответствия. В таких заданиях требуется найти соответствие между элементами двух множеств. В качестве простого примера рассмотрим задание на установление характера четности функций, заданных аналитическими выражениями.

Для представления в MathCAD документе задания на установление соответствия используем таблицы ввода **Table**. Заполнение ячеек такой таблицы выполняется только вводом чисел в ячейки. В остальном с таблицей ввода можно работать как с обычной матрицей.

1. Вставьте в документ таблицу ввода (Insert/Data/Table) (рис. 1),

Puc. 1

¹ Грушевский С.П., Попова Г.И. Конструирование электронных дидактических документов в среде MathCAD: Учеб.-метод. пособие. Краснодар: КубГУ, 2005. 72 с.

Попова Г.И. Конструирование электронных учебных материалов в профессиональной подготовке учителей. Автореф. дисс... к.п.н. Краснодар, 2006. 23 с.

увеличьте количество строк и столбцов до нужного количества сопоставляемых объектов, потянув за правый нижний угол таблицы (в нашем примере — до трех). В поле ввода укажите имя таблицы — А, расположите над колонками таблицы надписи Функция четная, Функция нечетная, Функция общего вида, увеличьте ширину колонок по ширине текста, выключите при помощи контекстного меню отображение аргументов (Hide Arguments) и метки столбцов и строк (roperties/Shou column/row Labels) (рис. 2).

Функция чётная	Функция нечётная	Функция общего вида
0		

Рис. 2 Задайте вектор с исходными данными

> ORIGIN := 1 $r(x) := \begin{pmatrix} \cos(x) \\ \sin(x) \\ (x-1)^2 \end{pmatrix}$

Системная переменная ORIGIN задает начальное значение индексов вектора и матрицы, по умолчанию ее значение равно 0, а мы будем нумеровать с единицы, поэтому необходимо переопределить её.

2. Для того чтобы варианты заданий отличались порядком следования компонент, используем алгоритм генерации перестановок², который реализуем в виде функ-

ции P(n,k) (рис. 3), генерирующей k-тую в лексикографическом порядке перестановку n чисел от 1 до n.

$P(n,k) \coloneqq$	for $i \in 1 n$			
	$p_i \leftarrow i$			
	$m \leftarrow 2$			
	while $m \le k$			
	i ← 0			
	for $j \in 1n - 1$			
	$i \leftarrow j$ if $p_j < p_{j+1}$			
	if i > 0			
	$imin \leftarrow i + 1$			
	$\min \leftarrow \mathbf{p}_{i+1}$			
	for $j \in i + 1 n$			
	if $(p_i < p_j) \land (p_j < \min)$			
	imin \leftarrow j			
	$\min \leftarrow \mathbf{p}_j$			
	$p_{imin} \leftarrow p_i$			
	$p_i \leftarrow min$			
	$n1 \leftarrow \frac{n-i}{2}$			
	for $i \in 1n1$			
	$r \leftarrow p_{i+i}$			
	$p_{i+i} \leftarrow p_{n-i+1}$			
	$p \cdot \cdot \leftarrow r$			
	r n-j+l			
	$m \leftarrow m + 1$			
1	I D			

² Касьянов В.Н., Сабельфельд В.К. Сборник заданий по практикуму на ЭВМ. М.: Наука, 1986. 271 с.

технология и практика обучения

Определим вектор v, представляющий собой «перемешанные» номера элементов вектора r(x):

$$v := P(3,1 + round(rnd(5)))$$

Так как количество перестановок из трех чисел равно 6, значение второго аргумента функции задается здесь как целое случайное число в диапазоне от 1 до 6. Выведем вектор v

$$v = \begin{pmatrix} 2\\ 3\\ 1 \end{pmatrix}$$

Чтобы компоненты вектора v воспринимались в дальнейших расчетах как скалярные величины, а не как функции, и при этом не возникали ошибки в вычислениях, сохраним вектор во внешнем файле и введем из него. Сохраним в таблице Excel vect.xls командой Insert/Data/File Output (Вставка/Данные/Файл для вывода), в списке File Format выберем Microsoft Excel,

а затем прочитаем из файла (Insert/Data/File Input).

$$y(x, i) := r(x)(v_i)$$

Вектор у содержит компоненты вектора г, следующие в новом порядке, задаваемом вектором v, т.е. «перемешанные». Слева от таблицы выведем с использованием оператора символьного вывода → компоненты вектора у (рис. 4).

	Функция чётная	Функция нечётная	Функция общего вида
$y(x, 1) \rightarrow \cos(x)$	0		
$y(x, 2) \rightarrow \cos(x)$			
$y(x, 3) \rightarrow \cos(x)$			

или вектора r (рис. 5).

pa r(x

Скроем левые части формул, используя их контекстное меню (рис. 6).

Р	uc.	6

3. Создадим новый файл MS Excel с именем cond.xls для сохранения параметров. Запишем в него параметры вариантов, задавая номер варианта N, и записывая параметры варианта с номером N в строку электронной таблицы с номером N:

$$N := 1$$

$$v := P(3, 1 + round(rnd(5))) \quad v = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$$

$$B_{N,1} := v_1 \quad B_{N,2} := v_2 \quad B_{N,3} := v_3$$

Вставим в документ блок записи матрицы В в файл.

В	

4. Перед генерацией параметров второго варианта изменим в команде ввода N:=1 значение 1 на 2 и добавим в начало файла генерации блок чтения матрицы В из файла cond.xls:

ТЕХНОЛОГИЯ И ПРАКТИКА ОБУЧЕНИЯ

100

Затем для пересчёта документа выполним команду Tools/Calculate/Calculate WorkSheet.

5. Для генерации параметров третьего варианта изменим значение N на 3 и выполним команду **Tools/Calculate/Calculate WorkSheet**. Продолжаем так далее, изменяя номер варианта, в файл cond.xls добавляются параметры вариантов. Напомним, что в нашем простейшем случае существует всего шесть различных вариантов заданий, отличающихся порядком следования формул. В окончательном виде файл генерации представлен на рис. 7.

Puc. 7

Здесь не показана функция P(n,k), она размещена на соседней странице файла. Сохраним созданный файл с именем gen.mcdx.

6. На основе файла генерации создадим файл карточки задания kart.mcdx, который предъявляется учащемуся. Добавим текст условия задания, поместим блоки считывания параметров и сохранения ответов в области (Area), которые можно закрыть и защитить паролем. Вставка области выполняется командой **Insert/Area** (Вставка/ Область), в документе MathCAD появляется пустая область с линиями и значками (рис. 8).

ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ. № 4/2013

Ŧ	_
*	

Puc. 8

Двойной щелчок по значку сверху или снизу закрывает область, т.е. делает её скрытой.

7. Добавим программный блок оценивания ответа — результата заполнения таблицы обучаемым (рис. 9).

Ball :=
$$c \leftarrow 0$$

for $i \in 1..3$
for $j \in 1..3$
 $c \leftarrow c + 1$ if $(v_i = j) \land (A_{i,j} = 1)$
c

8. Создадим новый файл для сохранения ответов otvet.xls, в строке электронной таблицы с номером N будет сохраняться количество баллов обучаемого, выполнившего вариант с номером N. Добавим в начало документа kart.mcdx блок считывания файла ответов, в конце — блок сохранения ответов.

9. Поместим в области **Area** блоки считывания параметров и сохранения ответов. Вид карточки задания показан на рис. 10 (с. 98).

Закроем области и защитим паролем точки задания с закрытыми областями покас помощью параметров команды **Format**/ зан на рис. 11. **Properties** или контекстного меню. Вид кар-

Карточка задания

Введите номер задания

N := 1

<u>Задание.</u> Установите соответствие между функциями и характером четности. Для этого поставьте цифру 1 в ячейку на пересечении соответствующих строки и столбца.

Puc. 11

В таком виде карточка предъявляется обучаемому.

10. Для сохранения результатов выполнения заданий в электронном виде создадим электронную таблицу vedom.xls — ведомость успеваемости, в которую занесем список обучаемых и вставим формулы для ссылки на соответствующие (по номеру варианта) ячейки таблицы Otvet.xls.

11. Задания могут предъявляться и в бумажной форме. Для подготовки набора заданий скопируем карточки заданий разных вариантов в документ Word и распечатаем.

Отметим, что в более сложном случае используются таблицы большей размерности, и для того чтобы варианты заданий отличались не только порядком следования сопоставляемых объектов, но и их составом, потребуются дополнительные программные блоки, позволяющие делать выборку нужного количества элементов из заданных множеств и генерировать их перестановки, чтобы матрица соответствия не была единичной. Сопоставляемые объекты могут быть представлены не только в символьном и текстовом виде, но и в виде графиков, как, например, на рис. 12 (с. 104).

ТЕХНОЛОГИЯ И ПРАКТИКА ОБУЧЕНИЯ

Найдите пары: "функция - график производной этой функции", Поставьте в нужные клетки таблицы цифру 1. $y(x, 1) \rightarrow 3$ $y(x, 2) \rightarrow x^2 + 3$ $y(x, 3) \rightarrow x^3 + 3$ $y(x, 4) \rightarrow -x - 3$

Puc. 12